

A dialog about circular economy – although not two buildings are the same

Leonora Charlotte Malabi Eberhardt Erhvervs PhD

MTHøjgaard

MT Højgaard

Situated in Denmark

100 years of experience

Construction and civil engineering

Research and development

Social responsibility

A big knowledge bank and knowledge sharing

Our motivation for CE? How do we understand CE? How do we practice it?

Our motivation

The construction industry is responsible for:

25% of human induced CO₂-emissions ^[1]

40% Of the material produced and consumed globally (by volume) ^[1]

40% of the worlds waste generation (by volume) ^[1]

80% Demand increase for construction from 1980-2008 ^[2]

Preparing for the future:

A great amount of materials ever extracted in human history are located in the built environment^[4]

It is estimated that the anthropogenic stock outweighs the natural resource stock ^[5]

Politics and legislation in DK:

- CE Advisory Board's recommendations for the government 2017
- The Danish governments' CE strategy 2018
- Danish Standardisation 2018
- EU waste directive 2018

Circular economy in buildings

- Managing the constant flow of resources
- Within a restorative and regenerating capacity
- By intention and design
- To keep materials at their highest utility and value at all times
- Choosing which resources to use, where to extract them and how to use them
- Designing for whole building life cycle

How do we work with CE concept when all buildings are unique?

[6] [7]

Source: Ellen MacArthur Foundation; World Economic Forum; The Boston Consulting Group

Joining forces

From intuition towards decisions based on well-founded scientifical facts and data

MTHøjgaard

ntifical facts and data

University supervisors

Company supervisors

Ninette Alto

Technical Director, Sustainability MT Højgaard

Project period: 1/10/17 - 1/10/20

John Sommer

Strategy & Business Development Director MT Højgaard

Industrial PhD

Leonora Eberhardt

Industrial PhD student, Aalborg Universitet MT Højharrd Harpa Birgisdottir

ALBORG UNIVERSITY COPEN

Senior researcher, Statens Byggeforskningsinstitut

Morten Birkved

Professor, Syddansk Universitet MTHøjgaard

To speak the same language

80% buildings' environmental impact and resource flow is determined by the design decisions ^[1]

🕈 MTHøjgaard

The industrial PhD project

We need to move our knowledge to the design phase, but it requires that we have the knowledge first!

Goal: develop a design decision support to help building designers select circular economy strategies

Aim: improving environmental performance of buildings

Study: the link between circular economy strategies and the environmental performance of building typologies

Our starting point - Where is the value?

Findings Our first take

www.buildingacircularfuture.com

Life cycle assessment Building components

EN 15978 openLCA 1.4 Ecoinvent 3.2 database

			Environmental impacts			Resource use impacts				Toxicology impacts				
Reusable	Use				Weighted									
components	cycles	GWP	ODP	POCP	AP	EP	ADPe	ADPf	FAETP	HTP	MAETP	TETP	impact savings [%]	
Floor slabs	2	45	46	45	45	46	46	46	46	43	44	45	45	
	3	60	61	60	60	60	60	61	61	59	60	60	60	
Core walls	2	36	32	27	30	28	11	32	13	20	18	7	23	
	3	50	47	43	46	44	31	47	31	38	37	28	40	50-60
Roof slabs	2	31	32	34	33	33	43	32	43	39	38	51	37	40-50
	3	41	42	44	46	44	53	42	53	47	48	62	47	30-40
Columns	2	41	32	37	38	37	28	38	29	32	32	29	34	20-30
	3	57	54	55	55	55	48	56	49	51	51	49	53	10-20
Beams	2	25	28	34	31	34	42	31	41	39	40	43	35	0-10
	3	33	38	46	42	45	56	42	55	52	53	58	47	<0

Note: Weighted impact savings are calculated as the average impact savings of each reusable component compared to no reuse using equal weighting factors for each environmental impact category assessed, this includes: GWP, ODP, POCP, AP, EP, ADPe, ADPf, FAETP, MAETP, HTP and TETP. [9]

Life cycle assessment Building level

EN 15978 openLCA 1.4 Ecoinvent 3.2 database

Optimisation of one sub-component may not benefit the overall buildings environmental performance!

🕈 MTHøjgaard

Findings

- Snaps-shots don't give us the full picture!
- The building material composition is a determining factor!
- Materials perform unevenly across the environmental impact categories
- We need to understand the interdependancies of our buildings material composition better
- Although all buildings are unique the same resources are used

MTHøjgaard

The building metabolism

Number of replacements

From research to practice Educating the industry

To have a dialog we need common knowledge.

The environmental impact and material flow difference over time between linear and circular building components

LCA method development: How do we best calculate the environmental benefits of CE in buildings?

How do we communicate scientific results into industry practice?

🕈 MTHøjgaard

From research to practice Design and engineering strategies

- Different ways of achieving CE: How is CE being used in building design?
- Ranked according to the strategies most used
- Intuition based
- Studies suggest to create new design strategies through a combination of several CE design strategies to reduce environmental impacts and create value for the construction sector
- The individual strategies can enable or enhance other strategies

 Design for assembly/disassembly Design for material selection/substitution Design for adaptability and flexibility Design in modularity Design for secondary materials Design for product-service-systems 7 Design for prefabrication 8 Design for standardization Design for optimized shapes/dimensions Design for durability Design for material optimisation Design for material passport Design for accessibility Design reusing existing building/components/materials Design using BIM Design in layers Design for material storage 18 Design for symbiosis Design out secondary finishes 20 Design for use

Circle House

Stakeholder goal 60 social housing residents design for easy operation and maintenance Alignment

Sustainability goal 90% of the materials can be reused or recycled without loss of value

17

MTHøjgaard

1	Design for assembly/disassembly	Χ
2	Design for material selection/substitution	Χ
3	Design for adaptability and flexibility	Χ
4	Design in modularity	Χ
5	Design for secondary materials	Χ
6	Design for product-service-systems	X
7	Design for prefabrication	X
8	Design for standardization	Χ
9	Design for optimized shapes/dimensions	
10	Design for durability	Χ
11	Design for material optimisation	Χ
12	Design for material passport	Χ
13	Design for accessibility	Χ
14	Design reusing existing	
	building/components/materials	
15	Design using BIM	
16	Design in layers	
17	Design for material storage	
18	Design for symbiosis	
19	Design out secondary finishes	Χ
20	Design for use	

Teaming up desing and engineering strategies

When do we get value?

- Linking buildings environmental performance profiles with CE design strategies
- For which design strategy configurations?
- For which buildings, materials, components (direct reuse of components or direct access to resources?)
- Low hanging fruits
- Visionary strategies

[10]

WTHDjgaard What gets measured gets done!

It starts with you and me!

MTHøjgaard

Kontakt

LEONORA CHARLOTTE MALABI EBERHARDT +45 60937085 Icl@mth.dk

www.mth.dk

References

[1] Winkler, H., 2011. Closed-loop production systems-A sustainable supply chain approach. CIRP J. Manuf. Sci. Technol. 4, 243–246. https://doi.org/10.1016/j.cirpj.2011.05.001

[2] OECD, 2015. Material Resources, Productivity and the Environment. Paris.

[3] Becqué, R., Mackres, E., Layke, J., Aden, N., Liu, S., Managan, K., Nesler, C., Mazur-stommen, S., Petrichenko, K., Graham, P., 2016. Accelerating Building Efficiency: Eight Actions for Urban Leaders.

[4] Sanchez, B., Haas, C., 2018b. Capital project planning for a circular economy. Constr. Manag. Econ. 36, 303–312.

[5] Oezdemir, O., Krause, K., Hafner, A., 2017. Creating a Resource Cadaster—A Case Study of a District in the Rhine-Ruhr Metropolitan Area. Buildings 7, 45.

[6] Webster, K., 2015. The circular economy: a wealth of flows, 2nd ed. Ellen MacArthur Foundation, Isle of Wight.

[7] Rovers, R., 2018. Circular building, now what is that really? http://www.ronaldrovers.com/CIRCULAR-BUILDING-NOW-WHAT-IS-IT-REALLY

[8] Eberhardt, L.C.M., Birgisdóttir, H., Birkved, M., 2018. The Potential of Circular Economy in Sustainable Buildings. World Multidiciplinary Civil Engineering-Architecture-UrbanPlanning Symposium Conference (Avaiting publication)

[9] Eberhardt, L.C.M., Birgisdóttir, H., Birkved, M., 2018. Life cycle assessment of a Danish office building designed for disassembly. Build. Res. Inf. 0, 1–15. (Published)

[10] Eberhardt, L.C.M., Birgisdóttir, H., Birkved, M., 2018. Comparing life cycle assessment modelling of linear vs circular building components. Building as Material Banks Conference (Review)

[11] Urup, L., 2016. Integrated Design-Build Management - Studying Institutional Processes to Understand Project Coordination & Performance, Division of Construction Management Department of Civil & Environmental Engineering Chalmers University of Technology and MT Højgaard